Comment on “The global tree restoration potential”


1Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843, USA. 2Instituto Boliviano de Investigación Forestal, Casilla 6204, Santa Cruz, Bolivia. 3Département de Géographie, Université de Montréal, Montreal, QC H3C 3J7, Canada. 4Programa de Pós-graduação em Agricultura e Ambiente, Universidade Estadual de Maranhão (UEMA), Balsas, Maranhão, Brazil. 5Programa de Pós-graduação em Geografia, Natureza e Dinâmica do Espaço, Universidade Estadual de Maranhão (UEMA), São Luis, Maranhão, Brazil. 6Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA. 7Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa. 8Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa. 9Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland. 10Avignon Université, IMBE, CNRS, IRD, Aix Marseille Université, Marseille, France. 11Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia. 12Department of Ecología y Zoología, Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil. 13Department of Biology, University of Florida, Gainesville, Fl 32611, USA. 14Floresta Estadual de Assis, Instituto Florestal do Estado de São Paulo, São Paulo 19807-300, Brazil. 15Departamento de Biologia Geral/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161, Brazil. 16Lab of Vegetation Ecology, Instituto de Biotecnologias, Universidade Estadual Paulista (UNESP). Rio Claro 13506-900, Brazil. 17Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA. 18Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97330, USA. 19Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA. 20Environmental Management, Evangelical Lutheran Church District of Rendsburg-Eckernförde, Rendsburg, Germany. 21Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA. 22Chair of Restoration Ecology, Department Ecology and Ecosystem Management, Technische Universität München, 85354 Freising, Germany. 23Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK. 24School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UK. 25Terra Research Unit, Biodiversity and Landscape, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium. 26Division of Biology, Kansas State University, Manhattan, KS 66506, USA. 27Florida Institute for Conservation Science, Siesta Key, FL 34242, USA. 28Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. 29Department of Forestry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. 30School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK. 31Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa. 32Desertification Research Center (CIDE-CSIC), Valencia, Spain. 33Geography, University of Exeter, Exeter EX4 4E, UK. 34Forest and Nature Lab, Department of Environment, Ghent University, Ghent, Belgium. 35Ecosystem Restoration and Intervention Ecology Research Group, School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia. 36Wildlife Biology and Conservation Program, National Centre for Biological Sciences, GKVK Campus, Bengaluru 560065, India. 37National Centre for Biological Sciences, TIFR, Bengaluru 560065, India. 38School of Biology, University of Leeds, Leeds LS2 9JT, UK. 39Department of Ecologia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil. 40Center for Development Research (ZEF), University of Bonn, Bonn, Germany. 41Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany. 42Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil. 43Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA. 44Department of Botany and Zoology, University of Stellenbosch, Stellenbosch 7602, South Africa. 45College of Forestry, Oregon State University, Corvallis, OR 97331, USA. 46Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA. 47Institute of Ecology, Faculty of Sustainability, Leuphana University Lüneburg, 21335 Lüneburg, Germany. 48Tall Timbers Research Station and Land Conservancy, Tallahassee, Fl 32312, USA. 49Unaffiliated scholar, Cape Town 7708, South Africa.

*Corresponding author. Email: veldman@tamu.edu

Bastin et al.’s estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change mitigation could sequester 205 gigatones of carbon is approximately five times too large. Their analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.

Bastin et al. (1) used remote sensing and machine learning to estimate that global “tree restoration” could sequester 205 gigatones of carbon (GtC). If accurate and achievable, this would constitute an astounding accomplishment, equal to 20 times the current annual fossil fuel emissions (10 GtC/year) (2) and about one-third of total historical anthro-
pogenic emissions (600 GtC) (2). Unfortunately, key assumptions and data underlying Bastin et al.’s analyses are incorrect, resulting in a factor of 5 overestimate of the potential for new trees to capture carbon and mitigate climate change. We show that Bastin et al. (i) overestimated soil carbon gains from increased tree cover by a factor of 2; (ii) modeled new tree cover in regions where trees reduce albedo and increase climate warming (3, 4); and (iii) relied heavily on afforestation of grasslands and savannas—biodiverse ecosystems where fires and large herbivores have maintained low tree cover for millions of years (5, 6).

Bastin et al.’s inflation of soil carbon gains resulted in a ~98 GtC overestimate of potential carbon sequestration (Table 1). They mistakenly assumed that treeless areas have no soil organic carbon (SOC) and that SOC increases in direct (1:1) proportion to tree cover. The contribution of SOC to total carbon stocks is substantial in most terrestrial ecosystems. In humid tropical savannas, for example, 86% of all carbon is in soils (174 tonnes of SOC per hectare) (7). In boreal forests, 64% of carbon occurs in soils (8). North American grasslands can store as much carbon in soil (9) as tropical forests store as biomass (8). In Table 1, we display SOC-corrected carbon sequestration estimates that use more realistic (literature-derived) values for the changes in SOC that occur with afforestation and reforestation.

In addition to the SOC overestimate, Bastin et al. did not account for the warming effect of trees due to decreased albedo (3, 4). Trees, particularly evergreen conifers, are less reflective than snow, bare ground, or grasses, and thus absorb more solar energy, which is ultimately emitted as heat. At high latitudes and elevations, the warming effect of trees is greater than their cooling effect via carbon sequestration (3, 4). Similarly, trees planted in low-latitude, semi-arid regions can produce net warming for decades before carbon sequestration benefits are realized (10). Because, at a minimum, carbon from trees planted in boreal forests, tundra, or montane grasslands and shrublands should not be counted as climate change mitigation (Bastin et al. counted a SOC-corrected 17 GtC), in Table 1 we provide a corrected estimate that excludes these biomes.

The carbon sequestration estimate of Bastin et al. is also dependent on the false assumption that natural grasslands and savannas with fewer trees than predicted by their statistical model are “degraded” and in need of restoration (11). Ecological restoration of savannas and grasslands rarely involves planting trees, and more often requires tree-cutting and prescribed fire to promote biodiversity and ecosystem services (12). Yet after correcting for SOC, 46% of the carbon sequestration estimate of Bastin et al. comes from increased tree cover in grasslands, savannas, and shrublands (Table 1).

Among all biomes, tropical grasslands are the largest contributor to Bastin et al.’s estimate of potential carbon sequestration (SOC-corrected 40 GtC or 37% of the global potential; Table 1).

Although Bastin et al.’s model, developed with climate and soil data in protected areas, may be reasonable in some of the driest and wettest places on Earth, any statistical approach to predict tree cover at intermediate precipitation (500 to 2500 mm annually) must include the effects of fire and, where they still exist, large grazing and browsing animals (13). Because Bastin et al. failed to account for fire, their model had low predictive power across many of the open-canopy biomes they analyzed, as shown by their own uncertainty analysis. Although we commend their intent to respect the “natural ecosystem type” by training their machine-learning algorithm on protected areas, they map many of these same areas—particularly those with grassland-forest mosaics (e.g., Yellowstone National Park, USA)—as opportunities for tree planting. Of additional concern, their method of interpolation between protected areas misrepresents some enormous savanna regions (e.g., western Los Llanos in Colombia is targeted for 75 to 100% tree cover), presumably because the protected areas are located in adjacent tropical forests, not savannas.

Bastin et al.’s model suggesting grasslands and savannas as potential sites for restoration using trees is inaccurate and misguided. Earth’s savannas and grasslands predate humans by millions of years; their formation is a result of complex ecological and evolutionary interactions among herbaceous plants (grasses and forbs with extensive roots and underground storage organs), environmental change (climatic cooling, drying, changes in atmospheric CO₂), fires (first ignited by lightning, then by people), and large herbivores (5, 6). These ecosystems and their iconic species are already gravely threatened by fire exclusion and afforestation, processes that replace species-diverse biotic communities with lower-diversity forests (14). Carbon-focused tree planting will exacerbate these threats, to the detriment of people who depend on grasslands to provide livestock forage, game habitat, and groundwater and surface-water recharge (11). Moreover, trees planted in grasslands will be prone to carbon loss from fires. Because these detrimental effects should preclude tree planting in grasslands, savannas, and shrublands, we excluded these biomes from Bastin et al.’s estimate in Table 1.

In combination, our corrections for SOC and corrections to avoid the unintended consequences of misguided tree planting (i.e., warming and biodiversity loss with afforestation) would reduce Bastin et al.’s estimate of potential carbon sequestration by a factor of 5, to the still-substantial amount of ~42 GtC (Table 1). Although ecological restoration, if carefully implemented, can have a role in mitigating climate change, it is no substitute for the fact that most fossil fuel emissions will need to stop to meet the targets of the
Paris Agreement (15). Such action should be accompanied by policies that prioritize the conservation of biologically diverse ecosystems, irrespective of whether they contain a lot of trees.

REFERENCES


ACKNOWLEDGMENTS

J.W.V. thanks B. J. Danielson for many conversations on related topics. Funding: Supported by the Texas A&M Sid Kyle Global Savanna Research Initiative (T.W.B.); Swiss National Science Foundation (20F120_173699/N.B.); Centre National pour la Recherche Scientifique CNRS PICS 2018-2020 (RESIGRASS) (E.B.); CNpq (Brazil, 303179/2016-3) (G.D.); CNpq (Brazil) (J.G.S.); CNpq (Brazil, 303988/2018-5) (A.F.J.); NASA award NNX17AK14G (F.F.); NSF award 1354943 (W.A.H.); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Brazil, 2016/13232-5) (S.L.S.); the Swiss National Science Foundation (20FI20_173691) (N.B.); Centre National pour la Recherche Scientifique CNRS PICS 2018-2020 (RESIGRASS) (E.B.); CNpq (Brazil, 303179/2016-3) (G.D.); CNpq (Brazil) (J.G.S.); CNpq (Brazil, 303988/2018-5) (A.F.J.); NASA award NNX17AK14G (F.F.); NSF award 1354943 (W.A.H.); and USDA-NIFA Sustainable Agricultural Systems Grant 262253 (J.W.V.). Author contributions: J.W.V. wrote the paper with conceptual input from C.L.P., S.A., C.J.S., G.M., W.J.B., J.J.E., and V.M.T.; J.W.V. performed the carbon sequestration corrections in Table 1; J.G.P. and A.N.N. contributed to the literature analysis.

Data and materials availability: All data, explanations of calculations, and references to literature-derived values are presented in Table 1.
Table 1. Corrected estimates of the potential for increased tree cover to sequester carbon and mitigate climate change. We corrected Bastin et al.'s estimate (205 GtC) to represent realistic gains or losses of soil organic carbon (SOC) that occur with increased tree cover in each biome (based on (9, 16–21)). We then excluded biomes (assigned a value of 0 GtC) where tree planting for climate change mitigation should not occur because of unintended consequences (e.g., net warming from reduced albedo or loss of biodiversity). Although we disagree with several of the carbon density values used by Bastin et al. [e.g., they applied values for intact tropical forests (8) to estimate second-growth forest biomass, and applied values from humid tropical savannas (7) to deserts and tundra], we retained these values to demonstrate the magnitude of the SOC and biome corrections.

<table>
<thead>
<tr>
<th>Biome*</th>
<th>Canopy cover restoration area (Mha)*</th>
<th>Canopy density (tC/ha)*</th>
<th>Carbon density source*</th>
<th>Carbon gain (GtC)*</th>
<th>ΔC biomass (tC/ha)†</th>
<th>ΔSOC (tC/ha)†</th>
<th>Realistic ΔSOC (tC/ha)</th>
<th>Realistic ΔSOC source</th>
<th>SOC-corrected carbon gain (GtC)§</th>
<th>Biome-corrected carbon gain (GtC)</th>
<th>Detrimental effects of carbon-focused tree planting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boreal forests/taiga</td>
<td>178</td>
<td>239</td>
<td>(8)</td>
<td>42.6</td>
<td>85</td>
<td>154</td>
<td>0</td>
<td>(16)†</td>
<td>15.2</td>
<td>0</td>
<td>↓ albedo (net warming)</td>
</tr>
<tr>
<td>Deserts and xeric shrublands</td>
<td>78</td>
<td>202</td>
<td>(7)</td>
<td>15.7</td>
<td>28</td>
<td>174</td>
<td>5.1</td>
<td>(9)§</td>
<td>2.6</td>
<td>0</td>
<td>↓ provisioning of water, ↓ fire intensity</td>
</tr>
<tr>
<td>Flooded grasslands and savannas</td>
<td>9</td>
<td>202</td>
<td>(7)</td>
<td>1.8</td>
<td>28</td>
<td>174</td>
<td>12.4</td>
<td>(17)</td>
<td>0.4</td>
<td>0</td>
<td>↓ biodiversity</td>
</tr>
<tr>
<td>Montane grasslands and shrublands</td>
<td>19</td>
<td>202</td>
<td>(7)</td>
<td>3.9</td>
<td>28</td>
<td>174</td>
<td>-3.3</td>
<td>(18)</td>
<td>0.5</td>
<td>0</td>
<td>↓ biodiversity, ↓ albedo (net warming)</td>
</tr>
<tr>
<td>Temperate grasslands</td>
<td>73</td>
<td>155</td>
<td>(8)</td>
<td>11.2</td>
<td>81</td>
<td>74</td>
<td>-3.3</td>
<td>(18)</td>
<td>5.6</td>
<td>0</td>
<td>↓ biodiversity, ↓ forage production, ↓ fire severity</td>
</tr>
<tr>
<td>Tropical grasslands</td>
<td>190</td>
<td>283</td>
<td>(8)</td>
<td>53.5</td>
<td>199</td>
<td>84</td>
<td>12.4</td>
<td>(17)</td>
<td>40.0</td>
<td>0</td>
<td>↓ biodiversity, ↓ provisioning of water, ↓ forage production, ↓ fire severity</td>
</tr>
<tr>
<td>Tundra</td>
<td>51</td>
<td>202</td>
<td>(7)</td>
<td>10.2</td>
<td>28</td>
<td>174</td>
<td>0</td>
<td>(19)†</td>
<td>1.4</td>
<td>0</td>
<td>↓ albedo (net warming)</td>
</tr>
<tr>
<td>Mangroves</td>
<td>3</td>
<td>283</td>
<td>(8)</td>
<td>0.7</td>
<td>199</td>
<td>84</td>
<td>198</td>
<td>(20)</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Mediterranean forests</td>
<td>19</td>
<td>202</td>
<td>(7)</td>
<td>3.8</td>
<td>28</td>
<td>174</td>
<td>0</td>
<td>(21)†</td>
<td>0.5</td>
<td>0.5</td>
<td>↓ fire intensity#</td>
</tr>
<tr>
<td>Temperate broadleaf forests</td>
<td>109</td>
<td>155</td>
<td>(8)</td>
<td>16.9</td>
<td>81</td>
<td>74</td>
<td>-3.3</td>
<td>(18)</td>
<td>8.4</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>Temperate conifer forests</td>
<td>36</td>
<td>155</td>
<td>(8)</td>
<td>5.6</td>
<td>81</td>
<td>74</td>
<td>-3.3</td>
<td>(18)</td>
<td>2.8</td>
<td>2.8</td>
<td>↓ fire intensity and severity, ↓ albedo#</td>
</tr>
<tr>
<td>Tropical coniferous forests</td>
<td>7</td>
<td>283</td>
<td>(8)</td>
<td>2.0</td>
<td>199</td>
<td>84</td>
<td>12.4</td>
<td>(17)</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Tropical dry broadleaf forests</td>
<td>33</td>
<td>283</td>
<td>(8)</td>
<td>9.3</td>
<td>199</td>
<td>84</td>
<td>12.4</td>
<td>(17)</td>
<td>6.9</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>Tropical moist broadleaf forests</td>
<td>97</td>
<td>283</td>
<td>(8)</td>
<td>27.4</td>
<td>199</td>
<td>84</td>
<td>12.4</td>
<td>(17)</td>
<td>20.5</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

*From materials and methods and table S2 of Bastin et al. (1): Carbon gain = canopy cover restoration area × carbon density.
†Portion of carbon density attributable to biomass and soil, from the same sources used by Bastin et al. [i.e., (7, 8)].
‡Studies that report no statistically significant change in SOC.
§Mean of two sites with annual precipitation < 300 mm.
¶SOC-corrected carbon gain = canopy cover restoration area × (ΔC biomass + realistic ΔSOC).
#Strength of effects depends on ecological context, but effects are not universal enough to exclude the biome.
Comment on "The global tree restoration potential"


Science 366 (6463), eaay7976.
DOI: 10.1126/science.aay7976